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Abstract. The northern high latitudes have warmed by about 0.8°C since the early 1970s but 

not all areas have warmed uniformly [Hansen et al., 1999]. There is warming in most of Eurasia, 

but the warming rate in the United States is smaller than in most of the world and a slight cooling 

is observed in the eastern United States over the past 50 years. These changes beg the question; 

can we detect the biotic response to temperature changes? Here we present results from analyses 

of a recently developed satellite-sensed normalized difference vegetation index (NDVI) data set 

for the period July 1981 to December 1999: (1) About 61% of the total vegetated area between 

40°N-70°N in Eurasia shows a persistent increase in growing season NDVI over a broad 

contiguous swath of land from central Europe through Siberia to the Aldan plateau, where almost 

58% (7.3x106 km2) is forests and woodlands. North America, in comparison, shows a 

fragmented pattern of change in smaller areas notable only in the forests of the southeast and 

grasslands of the upper Midwest, (2) A larger increase in growing season NDVI magnitude (12% 

vs. 8%) and a longer active growing season (18 vs. 12 days) brought about by an early spring and 

delayed autumn are observed in Eurasia relative to North America, (3) NDVI decreases are 

observed in parts of Alaska, boreal Canada, and northeastern Asia, possibly due to temperature-

induced drought as these regions experienced pronounced warming without a concurrent 

increase in rainfall [Barber et al., 2000]. We argue that these changes in NDVI reflect changes in 

biological activity. Statistical analyses indicate that there is a statistically meaningful relation 

between changes in NDVI and land surface temperature for vegetated areas between 40°N-70°N. 

That is, the temporal changes and continental differences in NDVI are consistent with ground-

based measurements of temperature, an important determinant of biological activity. Together, 

these results suggest a photosynthetically vigorous Eurasia relative to North America during the 

past two decades, possibly driven by temperature and precipitation patterns. Our results are in 
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broad agreement with a recent comparative analysis of 1980s and 90s boreal and temperate forest 

inventory data [United Nations (UN), 2000].  

 

1.  Introduction 

 

        Analysis of surface temperature recorded at meteorological stations shows that the global 

surface temperature in 1998 is the warmest, and that the rate of temperature change during the 

past 25 years is higher than in any previous period of the instrumental record [Hansen et al., 

1999], and possibly the past six centuries [Mann et al., 1998]. The northern high latitudes 

experience pronounced warming, especially during winter and spring over Alaska, northern 

Canada, and northern Eurasia [Hansen et al., 1999]. Associated with this high latitude warming 

is a reduction in annual snow cover and an earlier disappearance of snow in spring [Groisman et 

al., 1994; Konstantin et al., 1999]. These changes have affected the global carbon cycle; the 

amplitude of the seasonal CO2 cycle in the northern hemisphere has increased on average by 

about 30% since the early 1960s [Keeling et al., 1996]. 

        These changes beg the question, can we detect the effect of interannual variations in climate 

on global biospheric activity. Myneni et al. [1997] report that the photosynthetic activity of 

terrestrial vegetation between 45°N-70°N increased between 1981 and 1991. Other studies report 

warming related phenological changes in plants [Colombo, 1998; Schwartz, 1998; Bradley et al., 

1999; Menzel et al., 1999], birds [Crick et al., 1999; Brown et al., 1999], and poleward range 

extensions by birds [Thomas et al., 1999] and butterflies [Parmesan et al., 1999]. 

        The importance of vegetation in the global carbon cycle is well known [Tans et al., 1990; 

Schimel, 1996]. The relations among temperature, growth rate of atmospheric CO2, and 
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vegetation activity are a complicated tangle of forcing/feedback responses, often with lag and 

scale dependencies [Braswell et al., 1997; Houghton et al., 1998]. Evidence for a biotic response 

to climate change sometimes is based on analyses of satellite-sensed data for the normalized 

difference vegetation index (NDVI). The NDVI data capture the contrast between red and near 

infrared reflectance of vegetation, which signals the abundance and energy absorption by leaf 

pigments such as chlorophyll. NDVI can be used to proxy the vegetation’s responses to climate 

changes because it is well correlated with the fraction of photosynthetically active radiation 

absorbed by plant canopies and thus leaf area, leaf biomass, and potential photosynthesis 

[Myneni et al., 1995]. The data typically are of global extent, 8 km spatial resolution and 10-15 

day temporal frequency, with the record beginning in July of 1981 and extending to the present.  

        Investigations of seasonal changes and interannual variability of global vegetation activity 

using NDVI assume that changes in NDVI contain clues about the vegetation’s response to 

climate. However, the interannual signal of vegetation canopy reflectance is subtle and subject to 

non-vegetation effects. Many factors, unrelated to ecosystem structure or function (viz. satellite-

drift, calibration uncertainties, inter-satellite sensor differences, bidirectional and atmospheric 

effects, volcanic eruptions, etc.), can introduce extraneous variability in NDVI, and this 

variability can be easily misidentified as real NDVI changes [Gutman et al., 1995; Privette et al., 

1995; Rao et al., 1995; 1996; Myneni et al., 1998; Gutman, 1999]. Therefore, it is important to 

develop, test, and apply corrections in order to produce a consistent and calibrated time series for 

NDVI from the raw satellite data. 

        Another important caveat is that some time series of climate variables and satellite data are 

nonstationary, i.e., they contain stochastic trends. The presence of stochastic trends means that 

standard statistical techniques such as ordinary least squares (OLS) may indicate a significant 
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relation among variables when none in fact exists. The Intergovernmental Panel on Climate 

Change (IPCC) notes these difficulties: ‘rigorous statistical tools do not exist to show whether 

relationships between statistically nonstationary data of this kind are truly statistically 

significant...’ [Folland et al., 1992]. Despite these difficulties, standard statistical methods are 

used to investigate the relations among changes in climate variables and ecosystems [e.g., 

Braswell et al., 1997; Myneni et al., 1997]. The interpretation of these results is clouded by the 

inability to determine whether relations among nonstationary variables are statistically 

significant. 

        Because of the aforementioned problems, it is important to characterize and minimize the 

non-vegetation effects in analyses of NDVI time series, choose statistical techniques appropriate 

for time series properties of NDVI and climate data, and interpret the results carefully in order to 

understand the relations between climate variations and vegetation dynamics. With this in mind, 

we analyze a recently developed NDVI data set to characterize and understand interannual 

variability in vegetation activity during the past two decades. The outline of this article is as 

follows. Section 2 describes the data sets, methodology, and assessment of NDVI data quality. 

The changes in NDVI are presented in section 3. The relationship between changes in NDVI and 

land surface temperature is discussed in section 4, and section 5 presents some concluding 

remarks. 
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2.  Data and Methods 

 

2.1.  GIMMS NDVI Data Set 

 

        We use the continental data set at 8 km resolution for the period July 1981 to December 

1999 produced by the Global Inventory Monitoring and Modeling Systems (GIMMS) group 

from the Advanced Very High Resolution Radiometers (AVHRR) onboard the afternoon-

viewing NOAA series satellites (NOAA 7, 9, 11 and 14). This data set consists of five subsets: 

Africa, Australia, North America, South America and Eurasia. It contains channels 1 (0.58 – 0.68 

µm) and 2 (0.73 – 1.1 µm) reflectances, channels 4 (10.3 – 11.3 µm) and 5 (11.5 – 12.5 µm) 

brightness temperatures, solar and view zenith angles, and the day of compositing. These channel 

and associated data correspond to the maximum NDVI value during a 15-day compositing 

period. The NDVI is expressed on a scale between -1 to +1. GIMMS NDVI ranges between -0.2 

and 0.1 for snow, inland water bodies, deserts, and exposed soils, and increases from about 0.1 to 

0.7 for increasing amounts of vegetation.  

        The production of GIMMS NDVI data set includes improved atmospheric corrections, 

especially corrections for stratospheric aerosol effects, relative to previously produced AVHRR 

NDVI data sets. The data processing features include improved navigation, cloud screening, and 

calibration for sensor degradation. A navigation algorithm that uses an accurate orbit model, the 

latest available satellite ephemeris and instrument clock correction data is implemented in the 

GIMMS production system [Rosborough et al., 1994]. This algorithm also accounts for target 

elevation through the use of a digital elevation model. Calibration of AVHRR visible and near 

infrared measurements is necessary before we can analyze time series that are acquired from four 
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satellites [Los, 1993; Rao and Chen, 1995]. A method based on data from high cold clouds and 

the dark ocean is used to calibrate the data set [Vermote and Kaufman, 1995]. This calibration is 

insufficient -- the NDVI of desert targets is not insufficiently stable. The calibration is improved 

by using a method developed by Los et al. [1998]. Scattering by aerosols, which affects both 

visible and near infrared channels, is the most challenging aspect of atmospheric correction. 

Stratospheric aerosols associated with volcanic eruptions such as Mt. Pinatubo and El Chichon, 

however, tend to have longitudinally homogeneous distributions within two months of injection 

and then slowly decrease with time. The data from April 1982 to December 1984 and from June 

1991 to December 1993 are corrected to remove the effects of stratospheric aerosol loading from 

El Chichon and Mt. Pinatubo eruptions with a method developed by Vermote and El Saleous 

[1994]. Corrections for tropospheric aerosol are not applied because the information on aerosol 

properties is insufficient. Residual atmospheric effects are minimized further by analyzing only 

the maximum NDVI value within each 15-day interval. To do so, each month is divided into two 

compositing periods; days 1-15 are compositing period one, and days 16 to the end of the month 

are compositing period two. The maximum NDVI value during each compositing period is 

chosen to represent the compositing time period. These data generally correspond to 

observations from near-nadir view directions [Los et al., 1994] and clear atmospheres [Holben, 

1986]. Maximum value NDVI compositing minimizes, but does not eliminate, residual 

atmospheric and bidirectional effects. 
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2.2.  GISS Surface Temperature Data Set 

 

         The NASA Goddard Institute for Space Studies (GISS) surface temperature analysis 

provides monthly measures of global surface temperature since 1880. The data set is derived 

from measurements taken at rural and small towns. Measurements from urban stations are 

adjusted so that their long-term trend matches their rural neighbors. The data set used here is 

grided global temperature anomalies, with respect to the 1951-1980 mean, from 1981 to 1999 at 

2 x 2 degree resolution. The area-averaged temperature anomaly is more accurate than the area-

averaged absolute temperature [Hansen et al., 1999]. 

 

2.3. Methodology 

 

2.3.1. Scaling of Temperature and NDVI Data 

 

       Temperature and NDVI data are reported at different spatial and temporal resolutions. Each 

sample of 2 x 2 degree temperature data is considered to be a square cell with a constant 

temperature value. For a given NDVI pixel p, its temperature )y,m,c,p(T  in composite period c 

(1 or 2), month m (from 1 to 12), and year y (from 1982 to 1999) is found by projecting its 

location (longitude and latitude) on the temperature data set. Here )y,m,1,p(T  equals 

)y,m,2,p(T  because the temperature data set has a monthly frequency. 
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2.3.2. Calculating the NDVI and SZA Anomalies 

 

           The NDVI and solar zenith angle (SZA) data display significant and relatively constant 

intrannual seasonality. This pattern is not relevant to data quality assessment and the analysis of 

interannual variation. Therefore, the data are deseasonalized as follows. Let )y,m,c,p(X  be the 

NDVI or SZA of pixel p, composite c, month m, and year y. The average annual cycle is defined 

as 

)m,c,p(X
−

 = ∑
=

99

82yy

)y,m,c,p(X
N

1
,                                                    (1)   

where yN  is the number of years ( yN =18). The deseasonalized anomaly )y,m,c,p(X '  is 

calculated as 

)y,m,c,p(X '  = )y,m,c,p(X - )m,c,p(X
−

.                                            (2)   

Annual averaging and anomaly calculations are performed only over pixels that satisfy certain 

conditions, which are discussed in the related sections. 

 

2.3.3. Spatial and Temporal Averaging of NDVI/SZA and Temperature Data 

 

        Due to the large number of pixels in the satellite data set, aggregation in space and/or time 

is necessary. For a given region or latitudinal band, let tNUM  be the total number of pixels of 

interest, and )y,m,c,p(X ''  represent either )y,m,c,p(T , )y,m,c,p(X  or )y,m,c,p(X '  as defined 

above. The spatial average )y,m,c(X s  is calculated as 

)y,m,c(X s  = ∑
=

tNUM

1p

''

t

)y,m,c,p(X
NUM

1
.                                                    (3)   
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Two types of temporal averages (monthly or yearly) with two different types of data, a single-

pixel time series )y,m,c,p(X '' or a spatially averaged time series )y,m,c(X s  are used in the 

following analyses. For a given period, let mN ( yN ) be the total pixels in month m (year y), the 

temporal average )m,c(X t

−

, )y,c(X t

−

, )m,c,p(X t

−

 and )y,c,p(X t

−

 are calculated as 

)m,c(X t

−

 = ∑
=

yN

1y
s

y

)y,m,c(X
N

1
,                                                    (4) 
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=

mN
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m
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N

1
,                                                    (5) 

)m,c,p(X t

−

 = ∑
=

yN

1yy

)y,m,c,p(X
N

1
,                                                 (6) 

)y,c,p(X t

−

 =  ∑
=

mN

1mm

)y,m,c,p(X
N

1
.                                                (7) 

Again, we emphasize that spatial and temporal averaging is performed only over pixels that 

satisfy certain conditions, which are discussed in the related sections. 

 

2.3.4. Spatial Autocorrelation 

 

         We analyze the data for spatial autocorrelation to evaluate the spatial pattern of NDVI 

changes and assess the quality of the GIMMS NDVI data set. Strong spatial autocorrelation 

means that NDVI changes of adjacent pixels are more similar than would be generated by a 

random process. The degree of spatial autocorrelation can reflect three underlying processes. If 

changes in NDVI are due to artifacts such as satellite drift, sensor degradation, and intersatellite 

difference, we would expect a high degree of spatial autocorrelation and the changes in NDVI 
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would have the same sigh over the same biome or latitudinal band [Myneni et al., 1998; Gutman, 

et al., 1999], especially in the northern high latitudes. If NDVI variations are dominated by a 

randomly distributed (in space) non-vegetation effect such as soil background influence, we 

would expect pixels to show differences in NDVI variations over small geographical areas. If 

changes in NDVI are generated by changes in climate, for example, temperature, we would 

expect a high degree of spatial autocorrelation, but the sign associated with the NDVI changes 

would vary among regions. 

        To calculate a simple measure for the spatial autocorrelation of NDVI changes, we classify 

pixels between two categories: ‘1’ for high NDVI increase and ‘0’ for low NDVI increase or 

NDVI decrease. For a given region, we test whether the spatial arrangement of 1/0 is ‘clustered’, 

‘dispersed’, or ‘random’. If the 1/0 values are scattered randomly over the region, there will be 

no spatial autocorrelation. To test the significance of spatial autocorrelation, it is necessary to 

know the probability that the observed number of 1/0 joints occur by chance. This probability 

can be estimated from the mean and standard deviation for the case of a random pattern [Chou, 

1997]. The expected number of 1/0 joints, Ebw, is defined by 

Ebw = 
)1N(N

JBW2

−
,                                                                           (8) 

where J is the total number of 1/0 joins, B is the number of ‘1’ areas, W the number of ‘0’ areas, 

and N the total number of areas in the study region (N=B+W). The standard deviation of Ebw is 

given by 

2
bwbwbw E

)3N)(2N)(1N(N

)1W(W)1B(B])1L(L)1J(J[4

)1N(N

BW)1L(L
E −

−−−

−−−−−
+

−

−
+=σ ∑∑ ,      (9) 
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where L is the number of 1/0 joints between a given grid and its contiguous grids. The null 

hypothesis that the spatial arrangement of ‘1’ (high NDVI increase) is random is tested with a Z 

statistic, which follows a normal distribution and is calculated as 

Z = 
bw

bwbw EO

σ
−

,                                                                           (10) 

where Obw is the observed number of 1/0 joints.  

        The critical value of the Z statistic at the 5% significance level is 1.96. If the calculated Z 

values is less (greater) than –1.96 (1.96), we can reject the null hypothesis, and we can say that 

the observed arrangement of ‘1’ is said to be ‘significantly clustered (dispersed)’ at the 5% level; 

otherwise, it is said to be ‘random’. 

 

2.4. Assessment of GIMMS NDVI Data Quality 

 

        Despite the corrections described in section 2.1, the GIMMS NDVI data set may still 

contain variations due to orbital drift and incomplete corrections for calibration loss and 

atmospheric effects. These are expected to be largest and best seen over a bright barren surface 

[Kaufmann et al., 2000], such as the Sahara, because the reflectivity does not change over time 

[Tucker et al., 1994]. We analyze a large arid region in the Sahara (3°W-16°E, 20°N-26°N) of 

19,076 pixels (1.22 x 106 km2) for the presence of variations due to orbital drift and incomplete 

corrections. GIMMS NDVI and SZA anomalies are produced by averaging all Sahara pixels 

using the method outlined in section 2.3.2. For comparison, we simulate the NDVI of this region 

with a radiative transfer model [Jacquemoud et al., 1992], using time invariant optical and 

structural properties of a dry sandy soil together with the actual time series of SZA at the time of 

satellite measurements over this area. The parameters used in this model include:   (1) view 
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angle: 0; (2) roughness parameter: h=0.109; (3) phase function parameters: b=1.642, c=0.731, 

b'=0.317, c'=-0.025; (4) single scattering albedo: ω=0.5869 for the red band (0.58-0.68 µm) and 

ω=0.6989 for the near-infrared band (0.725-1.1 µm). These two ω are generated by averaging 

soil particulate single scattering albedo spectrum given in Jacquemoud et al., [1992] over the 

corresponding wavelength bands. The simulated NDVI time series is used to assess NDVI 

variations with respect to SZA changes only.  

        Figure 1a shows the time series of GIMMS NDVI, modeled NDVI, and SZA. Spectral 

methods, such as the singular spectrum analysis (SSA), can be used to isolate periodic and trend 

components, oscillations, and other structured components [Vatuard et al., 1989]. We use the 

SSA toolkit [Dettinger et al., 1995] to decompose each of these time series into eight statistically 

independent components by accounting for the lag-covariance structure. The time series 

reconstructed with the first (second) component, shown in Figure 1b (Figure 1c), capture 6% 

(6%), 60% (23%) and 60% (23%) of the total variances of the original time series, respectively. 

Reconstructions with higher components, which capture a successively smaller percentage of the 

total variance, are not shown for brevity. The modeled NDVI has the same variance structure as 

SZA, which indicates that SZA has a significant effect on the NDVI for bare ground. Had the 

calibration and corrections in the production of GIMMS NDVI been ineffective or incomplete, 

the variance structure of GIMMS NDVI series would resemble either that of the modeled NDVI 

or the SZA time series. The dissimilarity in the variance distribution of all reconstructed 

components between the GIMMS NDVI and modeled NDVI shows that the methods used to 

generate the GIMMS NDVI data set largely minimized the SZA effects. A major feature of 

GIMMS NDVI series is its stability, without apparent discontinuities between satellites and no 

significant systematic variations during the period of any one satellite. The observed low 
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magnitude high frequency variations indicate the random nature of small variations over bare 

stable targets, such as the Sahara. 

        Based on the assumption that deserts act as a stable target, any trends in the GIMMS NDVI 

for the desert can be attributed to calibration, orbital drift, atmospheric and bidirectional effect 

residuals. Linear trends estimated from the GIMMS NDVI time series for the Sahara (Figure 1) 

are 0.000272/yr (NOAA-7), -0.00064/yr (NOAA-9), -0.000286/yr (NOAA-11) and 0.000526/yr 

(NOAA-14). All estimates are extremely small and none is statistically significant even at the 0.2 

level. We note a positive estimate for the NOAA-14 period, as in Gutman [1999] for the case of 

the Global Vegetation Index (GVI) data set, but its magnitude is insignificant compared to the 

GVI estimate. Gutman [1999] assumed that tropical humid forests also could be used as a stable 

target to assess the GVI data set. In addition to NDVI saturation problems over dense vegetation, 

the data from tropical humid forests contain influences from ENSO [Myneni et al., 1996; Asner 

et al., 2000] (signal) and residual clouds (noise). Therefore, the assumption of stability in tropical 

forests [Gutman, 1999] is not valid. Instead, we use the land surface temperature observations, an 

independent data set, to support and verify our results from GIMMS NDVI data analysis (section 

4). 

         To reduce any remaining non-vegetation effects on NDVI, and to exclude snow, barren and 

sparsely vegetated areas, we analyze relatively dense vegetated pixels only (because the soil 

background contribution to canopy spectral response decreases as vegetation density increases). 

This also excludes artifacts due to temporal variations in ground reflectivity in sparsely vegetated 

areas. Empirical and theoretical analyses indicate that NDVI is minimally sensitive to changes in 

SZA due to orbital drift and sensor changes and this sensitivity decreases as leaf area index 
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increases [Kaufmann et al., 2000]. Ground observations over boreal forests also indicate that 

changes in SZA have little effect on the seasonal NDVI pattern [Huemmrich et al., 1999]. 

        To exclude snow, barren, and sparsely vegetated pixels from our analysis, we define 

‘vegetated pixels' as those with: (1) June to August NDVI composite values greater than 0.1 in 

all years; and (2) June to August average NDVI value greater than 0.3 for all years. The resulting 

vegetation mask (Figure 2) compares well with other landcover maps [DeFries et al., 1998]. This 

mask also ensures that data from the same pixels are utilized in the entire analysis unlike Myneni 

et al. [1997]. 

         Time series of NDVI anomalies for different latitudinal bands in North America and 

Eurasia are generated by spatially averaging over all vegetated pixels with composite NDVI 

values greater than 0.1 (Figure 3). The anomalies for tropical (10°N-25°N) exhibit large 

fluctuations, some associated with satellite changes, orbit loss, volcanic eruptions, and possibly 

ENSO influences. The presence of sparse but evergreen vegetation in this zone also contributes 

to NDVI variations due to cloud-screening and calibration residuals. This is consistent with 

theoretical and statistical analyses which indicate that the impact of sensor changes and orbit loss 

decreases with increasing leaf area [Kaufmann et al., 2000]. 

        The data series 10°N-70°N resembles the 40°N-70°N series because the dominant signal 

from both continents of the Northern Hemisphere is generated by the dense temperate and boreal 

vegetation. The dramatic loss of orbit in the case of NOAA-11 is particularly evident in the data 

from the tropics (10°N-25°N). GIMMS uses data from NOAA-9 for the period between NOAA-

11 and 14, and this creates a clear discontinuity in the data series. It is interesting to note that the 

impact of El Chichon aerosols on NDVI, immediately after the eruption in May 1982, is stronger 
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in the North American data than in the Eurasian data. Similarly, the impact of Mount Pinatubo is 

stronger in the Eurasian data than in the North American data.   

        The downward trend in NDVI for all latitudes from mid-1991 onward coincides with the 

weak 1991-1992 El Niñ o event and eruption of Mt. Pinatubo, which brings into question the 

efficacy of stratospheric aerosol corrections. The uncorrected values are lower than the corrected 

data. For example, the corrected (uncorrected) May to September average NDVI values for the 

40°N-45°N latitudinal band from 1991-93 are 0.460 (0.455), 0.455 (0.435), 0.462 (0.460), 

respectively. To check their accuracy, we compare the aerosol optical depths retrieved from the 

image data with those from the SAGE instrument [Sato et al., 1993] and other published 

estimates. Several re-processings of the data indicate that NDVI decreases from 1991 to 1992. 

Moreover, the stratospheric aerosol optical depths required for NDVI to increase from 1991 to 

1992 are inconsistent with all estimates of observed and retrieved aerosol optical depths. 

Therefore, we believe that NDVI did decrease from 1991 to 1992, possibly due to the cooling 

that followed the eruption of Mt. Pinatubo [Hansen et al., 1996]. The relation between NDVI 

and land temperature in the northern high latitudes is investigated in section 4. 

 

3.  NDVI Changes in North America and Eurasia 

 

        The results outlined in section 2.4 indicate that the non-vegetation variations in NDVI for 

North America and Eurasia have been minimized from the GIMMS NDVI data set. In general, 

NDVI increases over time in the northern high latitudes and this increase is concentrated 

spatially in a way that suggests that the GIMMS NDVI data measure changes in vegetation.   
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3.1. Trends in Spatially Averaged NDVI between 40°N-70°N 

 

        The upward trend in the time series of NDVI between 40°N-70°N (Figures 3) is a 

characteristic feature of recent interannual variations in vegetation activity of the north [Myneni 

et al., 1997]. Linear time trends in NDVI estimated by OLS, for spring (April to May), summer 

(June to August), autumn (September to October) and the growing season (April to October) in 

vegetated areas between 40°N-70°N are given in Table 1. From 1982 to 1999, NDVI in Eurasia 

(North America) increases by 20.87% (16.84%) in spring, 8.73% (5.17%) in summer, 15.06% 

(9.67%) in autumn and 12.41% (8.44%) during the growing season. All NDVI trends except 

spring in North America are statistically significant at the 5% level. The absolute and percent 

NDVI changes are largest during spring in both continents. Likewise, all Eurasian trends are 

larger than North American trends. Seasonal differences in these trends and their statistical 

significance are tempered by the possibility that the NDVI data contain a stochastic trend. In that 

case, none of the trends in Table 1 may be significant at the 5% level.  

 

3.2.  Spatial Pattern of NDVI Trends 

 

        We use three methods to illustrate spatial patterns of NDVI change during the growing 

season. First, we define an index of persistence as follows. Linear trends in growing season 

average NDVI are calculated for the periods 1982-87, 82-89, 82-91, 82-93, 82-95, 82-97 and 82-

99. We denote these trends as t(i), i = 1, 2, ..., 7. A score of 1 is given if t(i+1) is greater than 

80% of t(i); otherwise the score is zero. The sum of these scores is calculated as an index of 

persistence. The maximum possible score is 6. This index can identify regions where NDVI has 
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increased consistently, as opposed to a trend estimate, which in the case of a small sample, can 

be biased by outliers. A persistence index of 5 or more, which shows a pixel where NDVI has 

increased in five or six of the six periods, is termed ‘high persistence’, while ‘low persistence’ 

refers to a pixel with persistence index between 1 and 4. Second, we identify pixels that have a 

linear trend in NDVI over the 18-year period that is statistically significant at the 5% level. 

Third, NDVI changes are presented as the difference between the last 5 years (1995-99) and the 

first 5 years (1982-86). The resulting maps of NDVI spatial changes are shown in Figure 4, 

together with climatological NDVI which shows the pattern of vegetation in the north.  

        The changes in NDVI measured by these three methods are roughly consistent. Pixels with 

high persistence, colored red and purple in Figure 4a, also are pixels where NDVI show a 

statistically significant trend (Figure 4b) and large increase (Figure 4c) over the sample period. 

The pattern of high persistence and large increases in NDVI are especially noteworthy in boreal 

Eurasia, along a broad swath of land east of 25°E and north of 50°N. This region includes the 

grasslands and croplands of the south central Russian uplands and extends northeast through the 

unmanaged mixed and needle forests to the Bolshezemalskaya Tundra. East of the Urals, there is 

a contiguous region of high persistence over the west Siberian plain and the central Siberian 

plateau. East of lake Baikal, there is a band of pixels which displays high persistence and a large 

NDVI increase between 50°N-55°N, that extends east to the Aldan plateau. These regions in 

Siberia and eastern Russia consist mostly of natural forests with arctic grasses and tundra to the 

north. Outside of this broad swath, large regions of densely vegetated areas in central Europe and 

Sweden also are notable. About 78% (9.8x106 km2) of the vegetation in these regions between 

40°N-70°N is unmanaged [DeFries et al., 1998], and almost 58% (7.3x106 km2) is forests and 

woodlands, an area equivalent to about 78% of the USA. The regions of high persistence in 
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Eurasia are also regions of high average growing season NDVI (Figure 4d). The degree of spatial 

coherence seen in Eurasia, i.e., large areas of high persistence circumscribed by regions of low 

persistence, is absent in North America. There, pixels with high persistence are relatively 

fragmented and the densely vegetated temperate and boreal forest regions in North America do 

not show a noteworthy pattern. Pixels with high persistence and significant NDVI increases in 

North America are located mainly in the needle forests of the southeast and grasslands of the 

upper Midwest. In total, only about 30% of the vegetated pixels between 40°N-70°N in North 

America display high persistence, compared to more than 61% of the vegetated area in Eurasia. 

On the other hand, NDVI values in the boreal vegetation in Alaska, Canada and northeastern 

Asia (east of 95°E, north of 40°N) decrease between the last five years and the first five years 

(Figure 4c). In these areas, the decline is especially apparent in the summer period, and a higher 

proportion of vegetated pixels show NDVI decrease in North America than in Eurasia (Figure 

not shown for brevity). Possible reasons for this decline are discussed in section 4. 

        We test the null hypothesis that the spatial distribution of pixels with high persistence in 

Figure 4a is random in North America and Eurasia. The calculated Z values for Eurasia and 

North America are -161.95 and -96.59, respectively. Both exceed the critical value –2.576 at the 

1% significance level. This implies that it is highly unlikely that a random process generated the 

spatial pattern of high persistence in NDVI shown in Figure 4a. In other words, pixels with high 

persistence are significantly clustered. This can be seen from Figure 4a in which all red or purple 

pixels (high persistence) are clustered around some regions, although these regions are more 

scattered in North America than in Eurasia. As discussed in section 2.3.4, there are three possible 

spatial patterns of NDVI changes. The observed spatial pattern of NDVI changes (Figure 4a) and 

observed NDVI decrease in some areas (Figure 4c) reduce the likelihood that NDVI increase is 
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due to artifacts because we don not see the similar NDVI changes in the same biome or 

latitudinal band in the high latitudes on both continents. The result of the autocorrelation analysis 

also reduces the likelihood that the changes in NDVI are caused by a spatially randomly process. 

The observed spatial patterns of NDVI changes in Figure 4a are consistent with the notion that 

these NDVI changes are associated with changes in climate (for example, temperature), that tend 

to occur over large geographic areas. Nonetheless, it is possible that some portion of NDVI 

variations is caused by non-vegetation effects. To analyze these results further, we use an 

independent climate data set, temperature, to support our analyses of GIMMS NDVI (section 4). 

 

3.3. Growing Season Changes 

 

        The annual integral of NDVI is a proxy for vegetation photosynthetic activity over the 

entire growing season [Fung et al., 1987]. This activity can be characterized by the two 

dimensions of the area under the seasonal NDVI curve; its magnitude and growing season 

duration. An increase in either or both can generate photosynthetic gains [Randerson et al., 

1999].  

        We define the growing season as April to October and assess changes in the magnitude of 

growing season NDVI average between 40°N-70°N from 1982 to 1999 (Figure 5a), where the 

time series from pixels with high persistence and low persistence are shown. Pixels of high 

persistence (low persistence) in Eurasia and North America show NDVI increases of about 9%-

16% (4%-12%). In Eurasia, the average NDVI of pixels with high persistence (0.389 ± 0.019) is 

greater than that of pixels with low persistence (0.377 ± 0.014). In North America, the average 

NDVI of these two types of pixels are comparable.  
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        To assess changes in the duration of photosynthetic activity, we calculate the length of the 

growing season. We define growing season as the number of days with NDVI greater than a 

threshold value (e.g., 0.3). The seasonal course of NDVI (averaged over the 18.5 years of data 

record) in Eurasia differs between pixels with high persistence and low persistence (Figure 5b). 

This difference is about 19-24 days for Eurasia (depending on the threshold value), while for 

North America, the difference is relatively small (4-12 days). We also investigate changes in the 

length of the growing season by tracking changes in the timing of spring greening (when the 

seasonal NDVI rises above 0.3) and end of activity in autumn (when the seasonal NDVI curve 

drops below 0.3). Between 1982 to 1999, the beginning of spring advanced by about 8 ± 4 days 

in North America and 6 ± 2 days in Eurasia (Figure 5c). Similarly, the termination of activity in 

autumn was delayed by 4 ± 3 days in North America and 11 ± 3 days in Eurasia. Therefore, the 

duration of the active growing season increased by about 12 ± 5 days in North America and 18 ± 

4 days in Eurasia. The fact that the estimated growing season duration from two methods (Figure 

5b vs. 5c) shows a large difference in Eurasia relative to North America lends further credence to 

the pervasive and unfragmented nature of NDVI changes in Eurasia. 

        Several previous studies note an extension in the growing season duration, primarily due to 

an early spring [Keeling et al., 1996; Myneni, et al., 1997; Colombo, 1998; Schwartz et al., 1998; 

Menzel, 1999; Bradley et al., 1999]. Our data support the idea of an early spring, but we also 

observe a comparable delay in the decline of autumn activity in Eurasia (Figure 5b and 5c). 

Although consistent with previous results, our results must be interpreted with caution. 

Measuring the growing season duration requires precise information about the time of spring 

greening and the end of activity in autumn. We measure the duration of the growing season from 

data with a coarse temporal resolution (15 days). Our results will change depending on the 
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threshold used to define the growing season and the frequency of the compositing period. 

Therefore, we emphasize the general changes suggested by the data but not the magnitudes. 

 

4.  Consistency between Changes in NDVI and Temperature Anomaly 

 

        Another way to determine whether the changes in NDVI reflect differences in biological 

activity between North America and Eurasia is to test whether the changes in NDVI are 

correlated with factors known to affect biological activity. Although not the only, or most 

important, determinant of biological activity, temperature is an important determinant. If changes 

in biological activity are responsible for the temporal changes and continental differences in the 

NDVI data set, they should be correlated with temporal changes and continental differences in 

ground-based measurements of temperature.  

        During the past 18.5 years, satellite NDVI data in the northern high latitudes show an 

increasing trend, but such trends are different for North America and Eurasia. Ground-based 

meteorological measures of temperature indicate that global surface temperature in 1998 is the 

warmest in the instrumental record [Hansen et al., 1999]. The rate of temperature change was 

higher in the past 25 years than during any previous period. The northern latitudes (23.6°N-

90°N) have warmed by about 0.8°C since the early 1970s, but not all areas have warmed 

uniformly. The warming rate in the United States is smaller than in most of the world, and there 

is a slight cooling trend in the eastern United States over the past 50 years [Hansen et al., 1999].  

        The time series for NDVI and land temperature anomaly between 40°N-70°N are generated 

by spatially averaging over all vegetated pixels with composite NDVI values greater than 0.1. On 

both continents, NDVI is positively correlated with the temperature anomaly during spring and 
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the growing season at the 1% significance level (Figure 6). The correlations are weaker during 

summer and autumn, but are still significant at the 5% level in Eurasia but not in North America.  

        These regression results must be interpreted carefully. Standard statistical methods are 

based on the assumption that the time series are stationary, that is, the mean and variance are 

constant over time and the covariance between two time periods depends only on the distance or 

lag between the time periods. The NDVI and/or surface temperature series may contain 

stochastic trends, and therefore be nonstationary [Kaufmann et al., 2000]. These time series 

properties violate the assumptions that underline standard regression techniques such as ordinary 

least squares (OLS), which generate efficient estimates of the relation between stationary 

variables but tend to overstate the statistical significance of the relation between variables with a 

stochastic trend. Such relations are termed ‘spurious regressions’ [Granger et al., 1974]. When 

evaluated against standard distributions, the correlation coefficients and t statistics for a spurious 

regression are likely to indicate that there is a significant relation among variables when in fact 

no relation exists.  

        One way to avoid a spurious association is to include a deterministic variable in the 

regression. This has the effect of detrending the original time series. To estimate the relation 

between NDVI and temperature, we estimate the regression model 

Y =  β0 +β1 X +  β2 time + ε ,                                                    (11) 

where Y is the dependent variable, time the deterministic variable, X the independent variable, 

β0, β1 and β2 regression coefficients, and ε is a stochastic error term. This specification is 

acceptable only if the dependent variable contains a deterministic trend; if the dependent variable 

contains a stochastic trend, detrending will introduce errors. Unfortunately, it is difficult to 

differentiate between deterministic and stochastic trends [Nelson et al., 1982; Enders, 1995]. The 
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Dickey-Fuller test statistic [Dickey and Fuller, 1979] can be used to detect a stochastic trend, but 

cannot be used reliably here because of short sample period (18 observations). To reduce the 

likelihood of a spurious regression, we also estimate the following regression model, 

∆Y =  β0 + β1∆X + ε .                                                    (12) 

In which ∆Y and ∆X are the first differences of X and Y, and β0, β1 and ε are as in (11). 

        Results of regression between the NDVI and temperature anomaly are shown in Table 2. 

The t statistic is used to test the null hypothesis that the regression coefficient associated with the 

temperature (β1) is zero at a predetermined level of significance. The t-statistic results for 

equation (11) and (12) indicate that there is a statistically meaningful relation, at the 1% 

significance level, between the NDVI and temperature anomaly in the spring and growing season 

for both Eurasia and North America. A similar relation exists for summer at the 1% significance 

level and autumn at the 5% significance level in Eurasia, but not in North America. 

        The possibility that the relation between NDVI and temperature indicated by equation (11) 

and (12) is spurious is evaluated further by estimating the relation between Eurasian NDVI and 

North American temperature or North American NDVI and Eurasia temperature. There is no 

physical reason to believe that temperature in one continent will affect NDVI in the other 

continent and so regression results which indicate a relation will imply that the results described 

above are spurious. In all cases, the t statistics fail to reject the null hypothesis that the regression 

coefficients that measure the relation between changes in North America and Eurasia are zero. 

These results reinforce the conclusion that there is a statistically meaningful relation between 

temperature anomaly and NDVI within North America and Eurasia.  

        Finally, the possibility that the relation between NDVI and temperature is spurious is 

investigated by estimating equation (11) and (12) at a finer spatial scale. We analyze data for 
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spring and the growing season because these relations are statistically significant at the 

continental scale. NDVI data for individual pixels are spatially aggregated to quarter degree grids 

and temporally averaged. These averages include data from quarter degree grid cells in which 

more than 50% of the 8 km pixels are vegetated. In general, the correlation between NDVI and 

temperature is significant at the 5% level in regions north of 40°N for spring (Figure 7a) and 

north of 50°N for the growing season (Figure 7b). The areal extent of grids where the correlation 

coefficient exceeds the 5% threshold is greater in spring relative to in the growing season. 

Together with previous results, we conclude that there is a statistically meaningful relation 

between GIMMS NDVI and land surface temperature anomaly. Nonetheless, this relation is 

incomplete because it ignores the other determinants of photosynthetic activity and therefore, 

may not be consistent with the effect of temperature in areas where other factors limit plant 

growth. For example, in semi-arid regions, precipitation may be a more important factor than 

temperature [Myneni et al., 1996].  

         We observe NDVI decreases in some regions (Figure 4). Such a decrease is especially 

apparent during summer in most of the boreal forest regions of Alaska and Canada (Figure not 

shown for brevity). There is a negative correlation between NDVI and land temperature anomaly 

during summer in these regions, but the relation is insignificant. This decoupling between NDVI 

and temperature may be associated with drought -- as these regions experienced a pronounced 

warming [Hansen et al, 1999] without a concurrent increase in growing season precipitation. 

Tree-ring records indicate that temperature-induced drought in the interior of Alaska has 

disproportionately affected the most rapidly growing white spruce [Barber et al. 2000]. This 

suggests that drought may limit carbon uptake in a large portion of the North American boreal 

forest  
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        The proceeding results suggest that warmer temperatures may have promoted plant growth 

in the north during the 1980s and 1990s, but this simplistic explanation my be valid only at 

coarse spatial scales. Possibly it is not mechanistically viable for all northern ecosystems and 

needs to be refined to allow for lags in the relation between plant growth and temperature 

induced by biogeochemical feedbacks [Braswell et al., 1997; Houghton, 1998]. Further 

reconciliation between empirical observations that suggest the effect of disturbance [Zimov et al, 

1999], soil temperature [Grace et al., 2000; Valentini et al., 2000], winter and summer 

precipitation [Vaganov et al., 1999; Barber et al., 2000] on plant growth in the north and 

inferences from satellite [Myneni et al., 1997] and atmospheric CO2 data [Keeling et al., 1996] 

also is required.  

 

5. Concluding Remarks 

 

        The northern latitudes (23.6°N-90°N) have warmed by about 0.8°C since the early 1970s 

but not all areas have warmed uniformly [Hansen et al., 1999]. There is warming in most of 

Eurasia, but the warming rate in the United States is smaller than in most of the world and a 

slight cooling trend is observed in the eastern United States over the past 50 years.  

        Results of a newly developed satellite vegetation index data set for the period July 1981 to 

December 1999 can be summarized as: (1) About 61% of the total vegetated areas between 

40°N-70°N in Eurasia shows a persistent increase in growing season NDVI over a broad 

contiguous swath of land from central Europe through Siberia to the Aldan plateau, where 78% 

(9.8x106 km2) is unmanaged, and almost 58% (7.3x106 km2) is forests and woodlands - an area 

equivalent to about 78% of the USA. North America, in comparison, shows a fragmented pattern 
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of change in smaller areas notable only in the forests of the southeast and the grasslands of the 

upper Midwest. (2) Larger changes in both the magnitude and duration of the seasonal cycle of 

NDVI are observed in Eurasia compared to North America. NDVI in Eurasia (North America) 

increased by 12.41% (8.44%) during the growing season, from 1982 to 1999. A longer active 

growing season brought about by an early spring and delayed autumn is seen in Eurasia (18 ± 4 

days), compared to North America (12 ± 5 days). (3) NDVI decreases are observed in parts of 

Alaska, boreal Canada, and northeastern Asia, possibly due to temperature-induced drought as 

these regions experienced pronounced warming without a concurrent increase in growing season 

precipitation [Barber et al., 2000].  

        We argue that the changes in NDVI reflect changes in biological activity. Statistical 

analyses indicate that there is a statistically meaningful relation between changes in NDVI and 

land surface temperature for vegetated areas between 40°N-70°N. That is, the temporal changes 

and continental differences in NDVI are consistent with ground-based measurements of 

temperature, an important determinant of biological activity.  

        Together, these results suggest a photosynthetically vigorous Eurasia relative to North 

America during the past two decades. This conclusion is consistent with a recent comparative 

analysis of 1980s and 90s boreal and temperate forest inventory data which indicate a significant 

increase in the size of the growing stock in the wilderness of former USSR as a result of dramatic 

decline in annual fellings [United Nations (UN), 2000]. Additional corroboration from in situ 

data is required in view of the importance of growing season changes for carbon sequestration by 

vegetation [Randerson et al., 1999]. The satellite data and forest inventory analyses [Houghton et 

al., 1999; United Nations (UN), 2000] are inconsistent with the idea of a large terrestrial carbon 

sink in North America [Fan et al., 1998]. 
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        Normalized difference vegetation index data are only surrogates of plant photosynthetic 

activity and the translation to actual photosynthetic gains requires additional research. Therefore, 

the inferred changes in NDVI magnitude and growing season duration, together with the spatial 

persistence and trend patterns shown, must be interpreted cautiously; they suggest a 

photosynthetically vigorous Eurasia in comparison to North America between 1982 and 1998, 

possibly driven by temperature and precipitation patterns in the north.  

        The surface warming recorded by meteorological station thermometers globally during the 

past 25 years is especially pronounced on land in the north [Hansen et al., 1999]. Whether this is 

related to unmitigated buildup of heat trapping gases in the atmosphere is currently under study 

[Barnett et al., 1999], it does seem, however, that the birds [Thomas et al., 1999], butterflies 

[Parmesan et al., 1999] and boreal vegetation [Keeling et al., 1996] have responded to the warm 

pulse. 
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Figure Captions 

 

Figure 1. Spectral analysis of the time series of NDVI and solar zenith angle (SZA) anomaly 

from the Sahara (3°W-16°E, 20°N-26°N): (a) original time series, (b) reconstruction with the 

first component, and (c) reconstruction with the second component. The NDVI, SZA, and 

modeled NDVI series are in red, green and purple, respectively. 

Figure 2. Map of vegetated pixels used in this study. Vegetated pixels are identified as those 

with (a) June to August NDVI composite values greater than 0.1 in all years; and (b) June to 

August average NDVI value greater than 0.3 for all years. 

Figure 3. Time series of spatially averaged NDVI anomaly for different latitudinal bands of (a) 

North America and (b) Eurasia. 

Figure 4. Spatial patterns of (a) persistence in NDVI increase, (b) NDVI trend at 5% 

significance level, (c) NDVI difference between 1995-99 and 1982-86 averages, and (d) 

climatological NDVI from July 1981 to December 1999, during the growing season defined as 

April to October months. 

Figure 5. Changes in the seasonal NDVI magnitude and duration between 40°N-70°N from 

pixels with high persistence (persistence indices between 5-6) and low persistence (persistence 

indices between 1-4) in Eurasia and North America: (a) April to October average NDVI, (b) 
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NDVI annual cycle averaged over 1981-1999. The duration of the active growing season is 

estimated as the number of days with NDVI values above a certain threshold, and (c) Changes in 

the timing of spring greening and growing season duration estimated as the number of days with 

NDVI values above a threshold of 0.3 for vegetated areas in the 40°N-70°N band. The solid line 

is the trend estimated by a linear regression. "*" denotes statistical significance at the 5% level. 

Figure 6. Spatially averaged NDVI and near-surface air temperature anomaly between 40°N-

70°N: (a) April to May, (b) June to August, (c) September to October, and (d) April to October. 

"R" is the correlation coefficient. "**" ("*") denote the statistical significance at the 1% (5%) 

level. 

Figure 7. Spatial pattern of the relation between NDVI and near-surface air temperature: (a) 

correlation for April to May period, (b) correlation for April to October period. The majority of 

pixels, colored red and purple, are statistically significant at the 5% level (based on equations 

(11) and (12)). 

 

















 
TABLE 1.  NDVI* Trends in Eurasia (EA) and North America (NA) from 1982 to 1999 

 
 

 NDVI changes in 18 years 

Season Variable Absolute Values Percent t-statistic 
Apr-May EA NDVI 0.047 20.87 3.56† 
Apr-May NA NDVI 0.039 16.84 1.96 

Jun-Aug EA NDVI 0.042 8.73 8.01† 

Jun-Aug NA NDVI 0.025 5.17 3.47† 

Sep-Oct EA NDVI 0.043 15.06 3.91† 

Sep-Oct NA NDVI 0.031 9.67 2.85† 

Apr-Oct EA NDVI 0.044 12.41 6.53† 

Apr-Oct NA NDVI 0.031 8.44 3.64† 
 

              *  April to October average NDVI of vegetated areas between 40°N-70°N. 
†  Statistically significance at the 0.05 level. 
‡  Statistically significance at the 0.10 level .  



 
TABLE 2.  Relationship between NDVI* and Temperature Anomaly† (T) in Eurasia (EA) and North 

America (NA) from 1982 to 1999 
 
 

 Y = β0 + β1X + β2 time + ε ∆Y = β0 + β1∆X + ε 

Season Y X R2 β1 t-statistic R2 t-statistic 
Apr-May EA NDVI EA T 0.810 0.027 5.383‡ 0.611 4.849‡ 

Apr-May NA NDVI NA T 0.828 0.023 7.422‡ 0.648 5.256‡ 

Apr-May EA NDVI NA T 0.481 -0.005 -1.054 0.146 -1.603 

Apr-May NA NDVI EA T 0.336 -0.021 -1.790 0.091 -1.226 

Apr-May EA NDVI NA NDVI 0.209 -0.205 -0.527 0.006 -0.297 

Apr-May EA T NA T 0.310 -1.058 -2.523�  0.091 -1.224 

Jun-Aug EA NDVI EA T 0.861 0.012 2.563�  0.173 1.775�  

Jun-Aug NA NDVI NA T 0.524 0.007 1.732 0.176 1.792 

Sep-Oct EA NDVI EA T 0.647 0.014 2.587�  0.275 2.386�  

Sep-Oct NA NDVI NA T 0.423 0.008 1.496 0.105 1.324 

Apr-Oct EA NDVI EA T 0.917 0.020 5.834‡ 0.752 6.735‡ 

Apr-Oct NA NDVI NA T 0.756 0.016 4.306‡ 0.531 4.120‡ 

Apr-Oct EA NDVI NA T 0.751 0.005 1.210 0.005 0.272 

Apr-Oct NA NDVI EA T 0.493 0.008 1.085 0.121 1.435 

Apr-Oct EA NDVI NA NDVI 0.548 0.528 1.775 0.086 1.188 

Apr-Oct EA T NA T 0.193 0.515 1.464 0.121 1.435 
 

*  April to October average NDVI of vegetated areas between 40°N-70°N. 
† April to October average near surface air temperature anomalies (base period 1951-80) [Hansen et al., 1999] of 

vegetated areas between 40°N-70°N. 
‡ Statistically significance at the 0.01 level .  
�  Statistically significance at the 0.05 level .  
 


